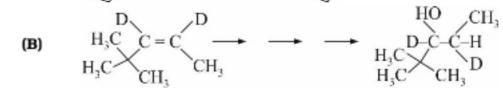


Date Planned ://_	Daily Tutorial Sheet-4	Expected Duration : 45 Min
Actual Date of Attempt : / /	JEE Advanced Archive	Exact Duration :


- The products obtained via oxymercuration (HgSO₄ + H₂SO₄) of 1-butyne would be :
- (1999)

- $CH_3 CH_2 \ddot{C} CH_3$ (A)
- (B) $CH_3 CH_2 CH_2 CHO$
- \odot

- (C) CH₃ – CH₂ – CHO + HCHO
- (D) CH₃ CH₂ COOH + HCOOH
- \odot In the compound, $CH_2 = CH - CH_2 - CH_2 - C \equiv CH$ the $C_2 - C_3$ bond is the type : (1999)
- $sp^3 sp^3$
- (C) sp sp³
- $sp^2 sp^3$ (D)

(1999)

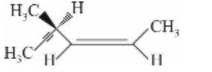
- 48. Complete the following reactions with appropriate reagents:

49. Propyne and propene can be distinguished by : (2000)

- conc. H_2SO_4 (B)
- Br_2 in CCl_4 (C)
 - dil. KMnO₄
- - AgNO3 in ammonia
- Which one of the following alkenes will react fastest with H2 under catalytic hydrogenation condition? 50.
 - (2000)

(A) $\stackrel{R}{\longrightarrow} \stackrel{R}{\longrightarrow} \stackrel{R}{\longrightarrow} \stackrel{R}{\longrightarrow} \stackrel{\Pi}{\longrightarrow} \stackrel{\Pi}{\longrightarrow} \stackrel{\Pi}{\longrightarrow} \stackrel{\Pi}{\longrightarrow} \stackrel{\Pi}{\longrightarrow} \stackrel{R}{\longrightarrow} \stackrel{R}{\longrightarrow}$

- 51. Statement I:1-butene on reaction with HBr in the presence of a peroxide produces 1-bromobutane. (2000)Statement II: It involves the formation of a primary radical.
- 52. In the presence of peroxide, hydrogen chloride and hydrogen iodide do not give anti-Markownikoff's addition to alkenes because: (2001)
 - (A) both are highly ionic


 \odot

- **(B)** one is oxidizing and the other is reducing
- (C) one of the steps is endothermic in both the cases
- (D) all the steps are exothermic in both the cases
- 53. The reaction of propene with HOCl proceeds via the addition of:

(2001) \odot

 \odot

- H⁺ in the first step
- Cl⁺ in the first step
 - Cl⁺ and OH⁻ in single step
- Hydrogenation of the given compound in the presence of poisoned palladium catalyst gives : (2001)

an optically active compound

OH in the first step

an optically inactive compound

(C) a racemic mixture

(D) a diastereomeric mixture